
Reinforcement Learning Toolbox™ Release
Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Reinforcement Learning Toolbox™ Release Notes
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2019b

Parallel Agent Simulation: Verify trained policies by running
multiple agent simulations in parallel 1-2

PPO Agent: Train policies using proximal policy optimization
algorithm for improved training stability 1-2

New Examples: Train reinforcement learning policies for
applications such as robotics, automated driving, and
control design . 1-2

R2019a

Reinforcement Learning Algorithms: Train policies using DQN,
DDPG, A2C, and other algorithms . 2-2

Environment Modeling: Create MATLAB and Simulink
environment models and provide observation and reward
signals for training policies . 2-2

Policy and Value Function Representation: Parameterize
policies using deep neural networks, linear basis functions,
and look-up tables . 2-3

Interoperability: Import policies from Keras and the ONNX
model format . 2-3

iii

Contents

Training Acceleration: Parallelize environment simulations and
gradient calculations on GPUs and multicore CPUs for policy
training . 2-3

Code Generation: Deploy trained policies to embedded devices
through automatic code generation for CPUs and GPUs . . . 2-4

Reference Examples: Implement controllers using
reinforcement learning for automated driving and robotics
applications . 2-4

iv Contents

R2019b

Version: 1.1

New Features

Bug Fixes

1

Parallel Agent Simulation: Verify trained policies by running
multiple agent simulations in parallel
You can now run multiple agent simulations in parallel. If you have Parallel Computing
Toolbox™ software, you can run parallel simulations on multicore computers. If you have
MATLAB® Parallel Server™ software, you can run parallel simulations on computer
clusters or cloud resources. For more information, see rlSimulationOptions.

PPO Agent: Train policies using proximal policy optimization
algorithm for improved training stability
You can now train policies using proximal policy optimization (PPO). This algorithm is a
type of policy gradient training that alternates between sampling data through
environmental interaction and optimizing a clipped surrogate objective function using
stochastic gradient descent. The clipped surrogate objective function improves training
stability by limiting the size of the policy change at each step.

For more information on PPO agents, see “Proximal Policy Optimization Agents”.

New Examples: Train reinforcement learning policies for
applications such as robotics, automated driving, and control
design
The following new examples show how to train policies for robotics, automated driving,
and control design:

• “Quadruped Robot Locomotion Using DDPG Agent”
• “Imitate MPC Controller for Lane Keep Assist”

R2019b

1-2

R2019a

Version: 1.0

New Features

2

Reinforcement Learning Algorithms: Train policies using DQN,
DDPG, A2C, and other algorithms
Using Reinforcement Learning Toolbox™ software, you can train policies using several
standard reinforcement learning algorithms. You can create agents to train policies for
the following:

• Q-learning
• SARSA
• Deep Q-networks (DQN)
• Deep deterministic policy gradients (DDPG)
• Policy gradient (PG)
• Advantage actor-critic (A2C)

You can also train policies using other algorithms by creating a custom agent.

For more information on creating and training agents, see Reinforcement Learning
Agents and Train Reinforcement Learning Agents.

Environment Modeling: Create MATLAB and Simulink
environment models and provide observation and reward
signals for training policies
In a reinforcement learning scenario, the environment models the dynamics and system
behavior with which the agent interacts. To define an environment model, you specify the
following:

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success.
• Environment dynamic behavior.

You can model your environment using MATLAB and Simulink®. For more information,
see Create MATLAB Environments for Reinforcement Learning and Create Simulink
Environments for Reinforcement Learning

R2019a

2-2

https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-reinforcement-learning-agents.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-matlab-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-simulink-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-simulink-environments-for-reinforcement-learning.html

Policy and Value Function Representation: Parameterize
policies using deep neural networks, linear basis functions,
and look-up tables
Reinforcement Learning Toolbox software provides objects for actor and critic
representations. The actor represents the policy that selects the action to take. The critic
represents the value function that estimates the value of the current policy. Depending on
your application and selected agent, you can define policy and value functions using deep
neural networks, linear basis functions, or look-up tables. For more information, see
Create Policy and Value Function Representations.

Interoperability: Import policies from Keras and the ONNX
model format
You can import existing deep neural network policies and value functions from other deep
learning frameworks, such as Keras and the ONNX™ format. For more information, see
Import Policy and Value Function Representations.

Training Acceleration: Parallelize environment simulations
and gradient calculations on GPUs and multicore CPUs for
policy training
You can accelerate policy training by running parallel training simulations. If you have:

• Parallel Computing Toolbox software, you can run parallel simulations on multicore
computers

• MATLAB Parallel Server software, you can run parallel simulations on computer
clusters or cloud resources

You can also speed up deep neural network training and inference with high-performance
NVIDIA® GPUs.

For more information, see Train Reinforcement Learning Agents.

2-3

https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-policy-and-value-function-representations.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/import-existing-policies-for-training-and-simulation.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-reinforcement-learning-agents.html

Code Generation: Deploy trained policies to embedded
devices through automatic code generation for CPUs and
GPUs
Once you have trained your reinforcement learning policy, you can generate code for
policy deployment. You can generate optimized CUDA® code using GPU Coder™ and C/C
++ code using MATLAB Coder™.

You can deploy trained policies as C/C++ shared libraries, Microsoft® .NET
Frameworkassemblies, Java® classes, and Python® packages.

For more information, see Deploy Trained Reinforcement Learning Policies.

Reference Examples: Implement controllers using
reinforcement learning for automated driving and robotics
applications
This release includes the following examples on training reinforcement learning policies
for robotics and automated driving applications:

• Train DDPG Agent to Control Flying Robot
• Train Biped Robot to Walk Using DDPG Agent
• Train DQN Agent for Lane Keeping Assist
• Train DDPG Agent for Adaptive Cruise Control
• Train DDPG Agent for Path Following Control

R2019a

2-4

https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/deploy-trained-reinforcement-learning-agents.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-agent-to-control-flying-robot.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-biped-robot-to-walk-using-ddpg-agent.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-dqn-agent-for-lane-keeping-assist.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-ddpg-agent-for-path-following-control.html

